Usta_Valod Posted November 14, 2008 Report Share Posted November 14, 2008 (edited) Увеличение плотности записи информации на флэш-картах сопровождается постоянной модификацией ячеек памяти. Для этой цели современной наукой уже предложено много новых материалов и физических принципов. В настоящее время выделяют три перспективных направления исследований: материалы на основе нитридов различных металлов (AlN, GaN); ферроэлектрическая поляризация диэлектриков (ferroelectric memory); движение протонов в изолированном слое (proton memory). Последний подход наиболее привлекателен для создания запоминающих устройств, так как требует минимального напряжения для записи информации. К сожалению, промышленное производство протонной памяти неизбежно столкнется с рядом трудностей. Использующие в настоящее время методы генерации протонов (высокотемпературная обработка и ионное легирование) не позволяют с достаточной точностью контролировать концентрацию протонов и, как следствие, функциональные характеристики запоминающих устройств. В работе "Molecular Storage Elements for Proton Memory Devices", опубликованной в журнале "Advanced Materials", предлагается простое решение технологической проблемы. Использование в качестве базового материала протонсодержащих полимеров значительно понижает стоимость устройства. Синтез из растворов методом spin-coating прост в исполнении и позволяет в широких пределах варьировать толщину пленки, концентрацию протонов и протонную проводимость материала, что необходимо для контроля характеристик получаемых устройств. В качестве донора протонов авторами использована 12-фосфорновольфрамовая кислота H3PW12O40 (HPW), стабилизированная полиметилметакрилатом (PMMA). Полученное устройство имеет слоистую структуру, в которой 270 нм слой HPW/PMMA расположен между двумя ионоблокирующими электродами (IBE). Под действием электрического поля кислота диссоциирует практически нацело с образованием трех H+ (рис. 1а-с). Протоны мигрируют в сторону от положительного электрода, создавая, таким образом, разность потенциалов, которая исчезает после снятия напряжения. Добавление дополнительного слоя, способного химически связывать протоны (в работе использовано сильное основание 2-аминоантрацен - AA), позволяет получать энергонезависимую память. В этом случае ассоциация кислоты после снятия напряжения не происходит, и заданный потенциал сохраняется (рис. 1e-d). Таким образом, предлагаемая в работе методика подходит для синтеза как энергозависимой, так и энергонезависимой памяти. nanometer.ru Edited November 14, 2008 by Usta_Valod Quote Link to post Share on other sites
Usta_Valod Posted November 14, 2008 Author Report Share Posted November 14, 2008 (edited) 1. Структура и принцип работы протонных элементов памяти. 2. Полупроводниковые характеристики энергозависимой памяти с различной структурой. 3. Изменение функциональных свойств образцов со временем. 4. Полупроводниковые характеристики энергонезависимой памяти. Edited November 14, 2008 by Usta_Valod Quote Link to post Share on other sites
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.